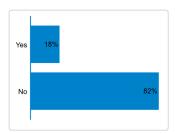
Untitled

Current run (last updated Mar 18, 2022 3:25pm)

14

282

137

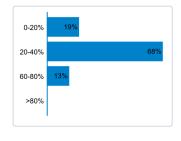

Activities

Participants

Average responses

Average engagement

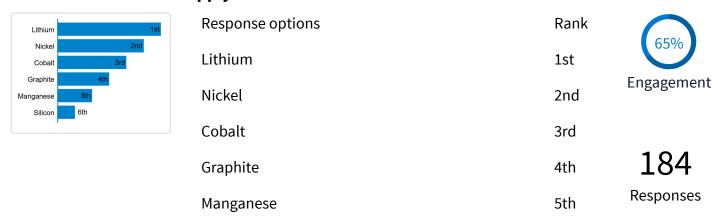
1) Do you own an electric/plug-in vehicle?


Response options
Yes
No

Count	Percentage
36	18%
160	82%

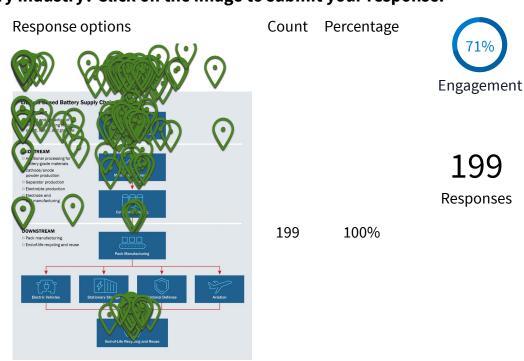
196
Responses

2) In 2030, what percent of US new car sales will be electric? (Note: in 2021 EVs accounted for 3% of new car sales)



Response options
0-20%
20-40%
60-80%
>80%

Percentage
19%
68%
13%
0%


3) Rank the elements in a lithium battery in the order of their criticality from maintaining a secure and reliable supply chain.

4) Which part of the supply chain represents the biggest challenge for developing a secure domestic battery industry? Click on the image to submit your response.

Silicon

6th

5) In 5 words or less: what unconventional sources should we explore to gain access to battery critical materials (e.g., mine tailings, coal ash)?

Responses

Go to new chemsitries

development mining capital for strategic minerals

Stop exporting domestically mined materials out of the country for processing.

164

Responses

Engagement

recycling non-battery devices | human waste

outer planet

Asteroid / Lunar mining

International Collaboration

Brine

sand refining

Asteroids!

Approaches that deliver material in the next 5 eats, seawater is a 10-15 years issue

There is a cobalt mine in Idaho, near Salmon (Iron Creek Project). It was run by First Cobalt, now called Electra Battery Materials Corporation

early stage development capital to derisk strategic mineral mining

People need to allow mining in their backyards, it's reality.

Sea water

Canadian tundra

mine tailings

issues: Permitting & access to non-nuclear green energy

"recycling non-battery devices"

Develop lithium-sulfur cells -- skip nickel, cobalt

Global investments with a20 year horizon

mines in Siberia supply 20% of high-grade "class 1" nickel

Sea water deeper into mantle. Canadian tundra

Responses use low cost rail and waterways to move material Asteroid Mining Al and remote sensing Maximize conventional resources New formulations with domestically available materials brine Talon metals does Nickel-Copper-Cobalt mining; Need to encourage recycling - Redwood Materials, Li-Cycle; TMC the metals co. approach might be interesting Invest in Africa Recycling Remove epa barriers to mining recycling US mint for copper and Nickel Ni from sour crude coke. Military batteries environmentally-friendly recycling. not pyroslysis Recycling two price surges could significantly increase the costs of design with recycling in mind Municipal Solid Waste (MSW) to Energy conversion Recyclling! Faster permitting global average price of lithium carbonate soared recycling mine tailings Li hard rock and clays

Partnership

importing scrap batteries for reccling from other countries - have Trade.Gov US embassy trade reps help clear the road

coal ash

Use chemistries w/fewer critical minerals

global collaboration

Graphite extraction and proicessing

Strengthen North and South American partnerships

don't use lithium batteries for non-transport.

Meanwhile, the global average price of lithium carbonate soared from \$12,275 in January 2019 to \$52,634 in February, according to data from Benchmark Mineral Intelligence. The trend is unrelated to the crisis in Ukraine, as Russia is not a major lithium supplier. Instead, it stems from strong demand for electric car batteries outstripping supply.

The two price surges could significantly increase the costs of electric vehicles. In a note to clients last week, analysts at Morgan Stanley warned that the nickel surge alone could make it \$1,000 more expensive to produce an EV.

Synthetic graphite with domestic assets

Recycling cemented carbide scrap (WC-Co) to produce pure Co chemicals for cathodes. ~ 6% of the world production of Co is consumed by the cemented carbide industry.

Address US-Based Nanomaterial production deficit

ocean nodules

Strategic relationships with US allies

Thacker pass Nevada

Exploration for critical metals - you need to look to find these resources

Landfill Mining

global partnership

Salton Sea

Lithium in brine/produced water

recycling

recycling

canada

Recycling of battery waste stream

graphite from biomass urban mining via recycling

Solution mining landfills, bioaccumulation

Petroleum for conductive polymers

Synthetic graphite production using low cost energy and domestic coal and petroleum derivatives and feedstocks, purified natural flake graphite comanufacturing.

Borax mine | Expand relation with friendly countries

For Ni, Co: switch to LFP, with solid electrolyt

Invest in recycling to mimic lead-acid industry

While Russia supplies only about 7 percent of the world's total nickel, its mines in Siberia supply about 20 percent of high-grade "class 1" nickel, which is used in most electric car batteries, said Simon Moores, CEO of Benchmark Mineral Intelligence.

use non-critical materials

seawater

Mine tailings and clay deposits

reverse supply chain battery flow

Graphite from biomass sources

International mining/production partnerships

reuse of radioactive contaminated nickel

Mine tailings | Pe

Petroleum products

coal ash

geothermal brine

global collaboration is necessary with friendly countries.

Synthetic | Recycling | recycle mfg scrap

waste materials | | Eea bed exploring

Mining and permits | volcanic residues

collaboration with allies and recycling

mine tailings

desal

But these efforts from top Democrats could rankle some climate advocates, who have opposed a proposed lithium mine in Nevada because of its potential environmental impact. It's all part of the "paradox of green growth," according to Chris Berry, an independent energy analyst who tracks mineral markets.

Brine aquifers for Li

"Traditional" non-research solutions

Mine tailings

Sea water

global partnerships and recycling

chemical precursor access

recycling

Conversion of tree biomass to graphite

Mine tailings

Invest in Canadian junior mines

stainless steel metal recycling

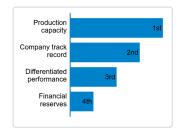
Brine extraction and Seabed Mining

President Biden last month announced new spending on U.S. mineral production, while Senate Finance Chairman Ron Wyden (D-Ore.) last week introduced legislation to spur domestic mining of nickel, lithium and other metals.

mine tailings

For Li: coproduction from geothermal brines

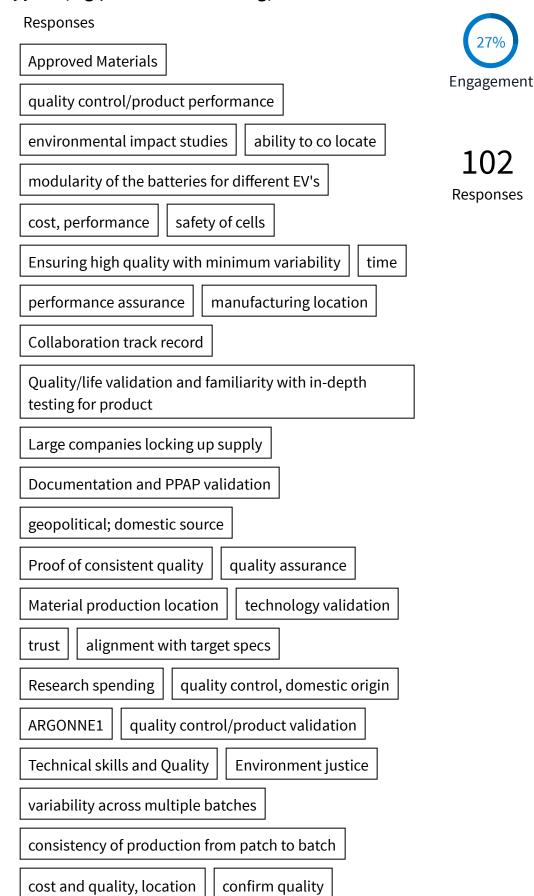
mine tailings and recycle feedstocks


Brine, Clay, recycling

Responses recycling renewable feedstocks for anodes diplomacy synthetic graphite, bio-derived carbon feedstock global partnerships recycling recycling large deposits in Canada Recycling Based purely on geological scarcity, Co is probably the most critical. International collaboration MINE TAILINGS Relax mining regulations E-waste global partnerships recycle Mine landfills urban mining overseas resources graphene fabrication Recycling Seawater and metal recycling recycling geothermal brines Strategic collaborations with allies Streamlining permitting for new mining projects. what about lithium in brine from geothermal power plant production? Petroleum coke Geothermal brines From Sea water Mine Tailings spent catalysts Recycled NiMH batteries sea bed mining sustainable global partnerships Recycling mine tailings Mine tailings seabed mining

increase diplomatic relations with allies

geothermal brines

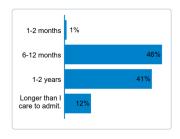

6) When considering potential new suppliers, rank the various criteria that are important before signing a contract.

Response options	Rank	500/
Production capacity	1st	58%
Company track record	2nd	Engagement
Differentiated performance	3rd	
Financial reserves	4th	164
		Daamamaaa

7) For OEMs and Battery manufacturers: In 5 words or less, what is the rate limiting step for qualifying a new supplier (e.g., calendar life testing)?


```
Responses
Qualification Testing Process
Speed of production to meet demand
quality/delivery/price
                         scalability
Production scale-up
                        Price and flexibility
Quality and capacity
Accelerated aging/performance validation testing
Life testing to ensure quality
Time to production scale
                             cost
Verified, independent testing
ease of startups doing business with govt.
carbon footprint
                    Battery performance and life
Time between order and delivery
Quality and performance consistency
ownership structure - NO Oligarchs
Does not apply to me
product lifetime and design philosophy (no
programmed obsolescence)
validation
              Getting to real data vs data sheet
Qualification Testing Process
                                 quality assurance
diversity of supplier's workforce
performance and cost
                          performance demonstration
Time to qualify
                   delivering according to our spec
Elongated OEM "Sample A/B/C" progression
Cost / performance / partnership
                                               COST
                                    quality
```

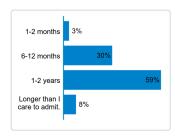
```
Responses
quality at needed scale
Demonstrated Quality and Certification
fit with ESG goals
ownership structure - NO Russian Oligarchs or other
New Dirty Money
Scale Up, Production Validation (PV)
Purchasing stringing suppliers along
quality consistency, life time performance
cycle life with high level of confidence
                                          N/A
                cultural differences
geopolitical
Consistent perfomance
B-Sample cell characterization
engineering resource shortage
demonstration of growth
                             Supporting data
product/process validation
                               contracting
test standards
                  material validation
quality and capacity
                        Capacity Verification
ITAR certified
                 Quality control
Production design performance/life validation
domestic workforce and supply
Consistent performance over time
diversity of supplier
Rapid performance and life validation
carbon footprint
                    quality, capacity
```


Iong time verification geopolitical location

Fundamental Electrochemical properties; CE!

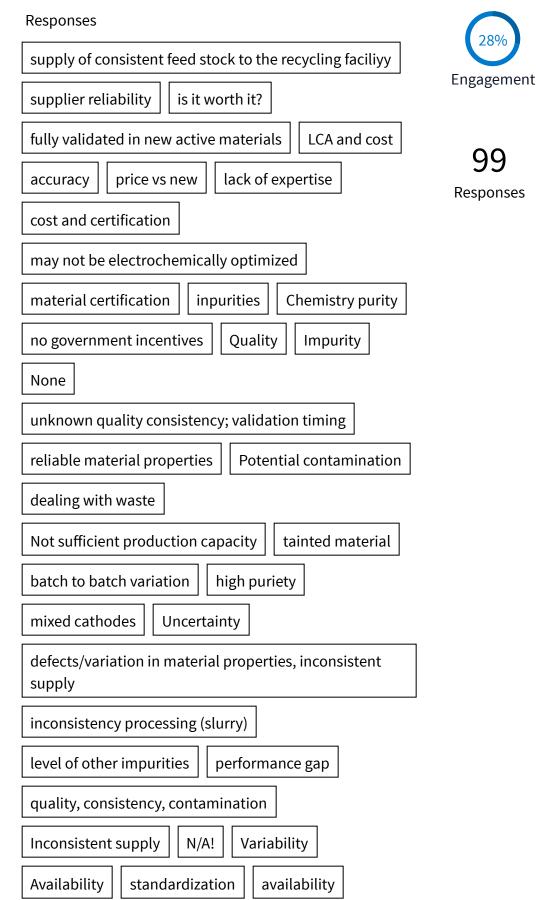
establishing good quality standards

historical performance design validation


8) How long does it take to qualify virgin materials (e.g., a new source of lithium or a new cathode chemistry)?

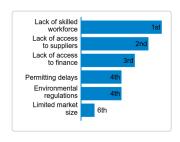
Response options	Count	Percentage	270/
1-2 months	1	1%	37%
6-12 months	48	46%	Engagement
1-2 years	43	41%	
Longer than I care to admit.	13	12%	105

Responses

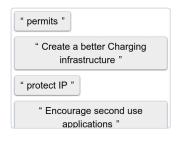

9) How long does it take to qualify recycled materials?

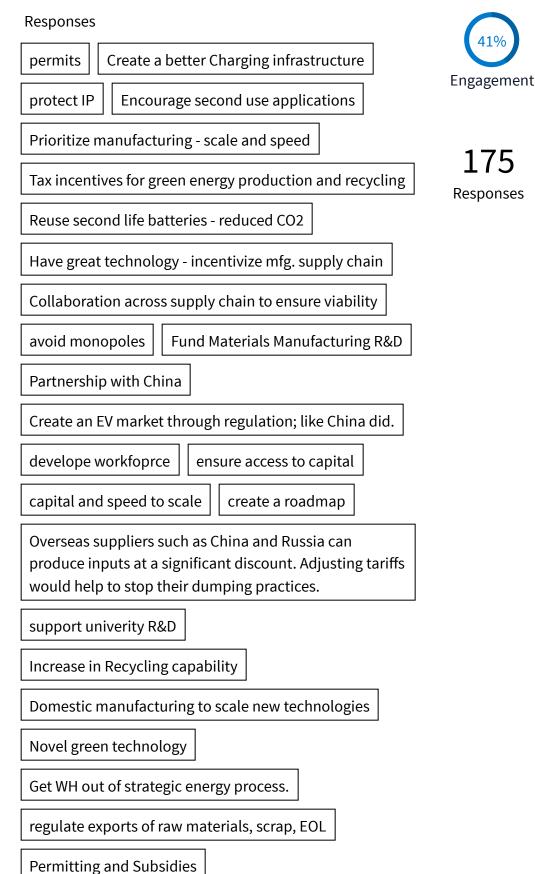
Response options	Count	Percentage	220/
1-2 months	3	3%	32%
6-12 months	27	30%	Engagement
1-2 years	54	59%	
Longer than I care to admit.	7	8%	91
			Responses

10) In 5 words or less: what issues inhibit you from using recycled materials in your manufacturing line (e.g., batch to batch variation)?



Responses material consistency changes over time no good standards for qualification quality, diversity of impurities, risk, inconsistency availability Availability and consistency feedstock availability and consistency how to get the battery quality need? Variation of chemistry impurities impurity, performance consistency cost purifying volume cost of transportation - cost/kg have skyrocketed contamination aluminum and/or copper contamination Consistent availability Variation in properties, potential contamination. quality availability depreciation From a good supplier, nothing **Recycling Process** quality consistent quality quality Quality purity level Consistency of quality Performance reliability yield, reduced performance Consistency Not enough material currently. consistent materail lack of significant volume Confidence in consistency of properties Nothing - we use recycled materials routinely!




11) What challenges stop you from expanding production domestically? Rank them in order.

Response options	Rank	220/
Lack of skilled workforce	1st	23%
Lack of access to suppliers	2nd	Engagement
Lack of access to finance	3rd	
Permitting delays	4th	66
Environmental regulations	4th	Responses
Limited market size	6th	

12) In 5 words or less: What is the single most important thing the U.S. government can do to make it possible for U.S. companies to compete with the companies that currently dominate the lithium-ion supply chain?

Consortium of US companies like MANTech **Education and manufacturing** Regulation fund research and development regulation funding Execute a national strategy Create basins, hubs of battery manufacturing regulation and permitting assistance develop tech to eliminate minerals from countries of concern Consistent support over many years workforce development create true gov collaborations instead of coordinating **Open Source Patent** Bi-partisan funding and policy inventive to domestic manufacturing Funding open doors to favorable business partnerships with China Cost of carbon and inequity research and renovation Put a tariff **Funding** regulation easier permitting process Streamlne permitting encourage data sharing NA Consistency beyond election cycles Unsure initial capital & ongoing tariffs access to EV telemetry to get BMS history for second life - show stopper - applies to 1st life and resale of used EVs too -

Creating a Consortium

UL certification and NFPA 855 effects on cost of conversation EV to stationary storage

removing regulation for 5 years

protect IP

Reward domestic manufacturing vs. imported products

sustained govt commitment

tariffs

Closed loop battery

require environmentally responsible lifecycle/production

streamlining reguylations

Public Private Partnership Support

Incentive

promoting collaboration among domestic partners

require proof of concept

Get an answer for NIMBY

pathway for integrating new materials

Recognize US's higher emission requirements and penalize countries of origin that have poor standards - China

Incentivize markets to buy U.S.A

Learn from China. Pick winners.

Working with Canada

Limit legal liability supply chain for second-life -

Innovation clusters

no cost share

Grant to more parties

Environmental Impact standards for imports

A US supply chain doesnt require US-based companies throughout. Trying to make supply chain purely US company based will fail.

More smaller grants rather than fewer large ones so there are more opportunities for innovation and research

more funding with fewer strings attached

Financial Incentives

Support indigenous domestic OEM's

incentivize foreign investment in US

invest in advanced electrode manufacturing

reduce rpolicy volatility

encouraging consortiums

Invest in Free world and don't support communist countries

Move to hydrogen fuel cells

Building new processing facilities

Regulation to guarantee the demand for EVs. Regulation has created the demand in China.

Stop subsidizing oil

Domestic workforce

Battery Form factor, recycling regulations, and standardization

agility in standard framework development to account for new technology

Reduce regulations

Corporate

counter china moves

Enhance global collaboration

local content requirements

invest in alternative battery chemistry

support domestic suppliers

Streamline permitting and regulations

Responses Incentivize domestic supply and collaboration Eliminate need for critical minerals dominate the production regions Invest in advance manufacturing facilities diverse battery systems demand US-produced materials Relax regulations capital and speed to scale invest in R&D secure critical raw materials Mining permits Less bureaucracy tax incentives Invest in education Drop political infighting Streamline mining and refining permitting Support upstream supply chain pave the way for business focused relationships with China and Europe More competition / diversified supply sources Look at real scientific data rather than trying to push political agendas paradox of green growth facilitate and expedite standup of upstream, notably

precursor manufacturing.

Approve permits quickly for new Li mining in US

Invest in USA more funding

funding for technology develoment

Support Skill Development

increase diplomatic relations w/ allies

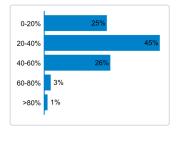
promoting domestic suppliers permitting and precursor chemicals mtg Get beyond NMC chemistry more funding in research focus on grid-scale Minimize time to permit Stop allowing material mined here to leave the country. Identify weakest links / biggest technology or mfg. gaps Tarriff on foreign supply on the entire value chain Create trade schools minimize permit reuirements Subsidies, stream line permitting tax credist Mining regulations Collaboration not competing Continue to support EV adoption policy creating equitable market Increase in Recycling capability Support cell manufacturing process innovation no cost share funding of small businesses new spending on U.S. mineral production incentives source of startup funding Streamline the grant application process protectionist measures promote collaboration tax credits after grants to sustain cost cutting secure demand invest in raw material processing avoid monopol invest in education for batteries

provide subsidies or tax holidays

Mining of Raw Materials

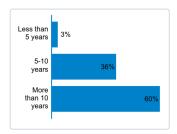
policy consistency for long term

Relax mining regulations


Build complete supply chain - End to end

subsidization

Streamline permitting


MOVE FAST!

13) In 2030, what percent of the US manufacturing capacity will focus on LFP cells? (Note: today's percent is trivially small)

Response options	Count	Percentage	270/
0-20%	19	25%	27%
20-40%	35	45%	Engagement
40-60%	20	26%	
60-80%	2	3%	77
>80%	1	1%	Responses

14) When will non-lithium-based batteries (e.g., sodium ion, flow batteries...) become widespread (i.e., 10's of GWh yearly production capacity) for vehicle or grid applications in the US?

Response options	Count	Percentage
Less than 5 years	3	3%
5-10 years	31	36%
More than 10 years	52	60%

30% Engagement